Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 624(7990): 92-101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957399

RESUMO

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Assuntos
Sequestro de Carbono , Carbono , Conservação dos Recursos Naturais , Florestas , Biodiversidade , Carbono/análise , Carbono/metabolismo , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Atividades Humanas , Recuperação e Remediação Ambiental/tendências , Desenvolvimento Sustentável/tendências , Aquecimento Global/prevenção & controle
2.
Nat Plants ; 9(11): 1795-1809, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37872262

RESUMO

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.


Assuntos
Ecossistema , Árvores , Humanos , Árvores/metabolismo , Florestas , Folhas de Planta/metabolismo , Hábitos , Carbono/metabolismo
3.
Am J Bot ; 110(10): e16229, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37661805

RESUMO

PREMISE: The Amazonian hyperdominant genus Eperua (Fabaceae) currently holds 20 described species and has two strongly different inflorescence and flower types, with corresponding different pollination syndrome. The evolution of these vastly different inflorescence types within this genus was unknown and the main topic in this study. METHODS: We constructed a molecular phylogeny, based on the full nuclear ribosomal DNA and partial plastome, using Bayesian inference and maximum likelihood methods, to test whether the genus is monophyletic, whether all species are monophyletic and if the shift from bat to bee pollination (or vice versa) occurred once in this genus. RESULTS: All but two species are well supported by the nuclear ribosomal phylogeny. The plastome phylogeny, however, shows a strong geographic signal suggesting strong local hybridization or chloroplast capture, rendering chloroplast barcodes meaningless in this genus. CONCLUSIONS: With our data, we cannot fully resolve the backbone of the tree to clarify sister genera relationships and confirm monophyly of the genus Eperua. Within the genus, the shift from bat to bee and bee to bat pollination has occurred several times but, with the bee to bat not always leading to a pendant inflorescence.


Assuntos
Quirópteros , Fabaceae , Abelhas/genética , Animais , Filogenia , Inflorescência/genética , Teorema de Bayes , Análise de Sequência de DNA , Evolução Molecular
5.
Nature ; 621(7980): 773-781, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612513

RESUMO

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.


Assuntos
Biodiversidade , Meio Ambiente , Espécies Introduzidas , Árvores , Bases de Dados Factuais , Atividades Humanas , Espécies Introduzidas/estatística & dados numéricos , Espécies Introduzidas/tendências , Filogenia , Chuva , Temperatura , Árvores/classificação , Árvores/fisiologia
6.
Nat Ecol Evol ; 6(10): 1423-1437, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941205

RESUMO

The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers.


Assuntos
Biodiversidade , Florestas , Solo , Árvores
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101981

RESUMO

One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.


Assuntos
Conservação dos Recursos Naturais , Florestas , Árvores/classificação , Planeta Terra , Árvores/crescimento & desenvolvimento
8.
Nat Ecol Evol ; 5(6): 757-767, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33795854

RESUMO

The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 'hyperdominant' species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations.


Assuntos
Florestas , Árvores , Biodiversidade , Brasil , Humanos
9.
Sci Rep ; 9(1): 3501, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837572

RESUMO

To provide an empirical foundation for estimates of the Amazonian tree diversity, we recently published a checklist of 11,675 tree species recorded to date in the region (ter Steege H, et al. (2016) The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Scientific Reports 6:29549). From this total of plant records compiled from public databases and literature, widely used in studies on the Amazonian plant diversity, only 6,727 tree species belong to the first taxonomically-vetted checklist published for the region (Cardoso D, et al. (2017) Amazon plant diversity revealed by a taxonomically verified species list. PNAS 114:10695-10700). The striking difference in these two numbers spurred us to evaluate both lists, in order to release an improved Amazonian tree list; to discuss species inclusion criteria; and to highlight the ecological importance of verifying the occurrence of "non-Amazonian" trees in the region through the localization and identification of specimens. A number of species in the 2016 checklist that are not trees, non-native, synonyms, or misspellings were removed and corresponded to about 23% of the names. Species not included in the taxonomically-vetted checklist but verified by taxonomists to occur in Amazonia as trees were retained. Further, the inclusion of recently recorded/new species (after 2016), and recent taxonomic changes added up to an updated checklist including 10,071 species recorded for the Amazon region and shows the dynamic nature of establishing an authoritative checklist of Amazonian tree species. Completing and improving this list is a long-term, high-value commitment that will require a collaborative approach involving ecologists, taxonomists, and practitioners.


Assuntos
Biodiversidade , Árvores/classificação , Brasil , Floresta Úmida
10.
PLoS One ; 13(6): e0198489, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29927972

RESUMO

Using data from 50 long-term permanent plots from across Venezuelan forests in northern South America, we explored large-scale patterns of stem turnover, aboveground biomass (AGB) and woody productivity (AGWP), and the relationships between them and with potential climatic drivers. We used principal component analysis coupled with generalized least squares models to analyze the relationship between climate, forest structure and stem dynamics. Two major axes associated with orthogonal temperature and moisture gradients effectively described more than 90% of the environmental variability in the dataset. Average turnover was 1.91 ± 0.10% year-1 with mortality and recruitment being almost identical, and close to average rates for other mature tropical forests. Turnover rates were significantly different among regions (p < 0.001), with the lowland forests in Western alluvial plains being the most dynamic, and Guiana Shield forests showing the lowest turnover rates. We found a weak positive relationship between AGB and AGWP, with Guiana Shield forests having the highest values for both variables (204.8 ± 14.3 Mg C ha-1 and 3.27 ± 0.27 Mg C ha-1 year-1 respectively), but AGB was much more strongly and negatively related to stem turnover. Our data suggest that moisture is a key driver of turnover, with longer dry seasons favoring greater rates of tree turnover and thus lower biomass, having important implications in the context of climate change, given the increases in drought frequency in many tropical forests. Regional variation in AGWP among Venezuelan forests strongly reflects the effects of climate, with greatest woody productivity where both precipitation and temperatures are high. Overall, forests in wet, low elevation sites and with slow turnover stored the greatest amounts of biomass. Although faster stand dynamics are closely associated with lower carbon storage, stem-level turnover rates and woody productivity did not show any correlation, indicating that stem dynamics and carbon dynamics are largely decoupled from one another.


Assuntos
Florestas , Biomassa , Carbono/metabolismo , Análise de Componente Principal , Chuva , Temperatura , Clima Tropical , Venezuela
11.
Science ; 353(6306): 1383-1387, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27708031

RESUMO

Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Florestas , Árvores , Região do Caribe , Tomada de Decisões , Pradaria , América Latina , Estações do Ano , Clima Tropical , Madeira
12.
Glob Chang Biol ; 22(12): 3996-4013, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27082541

RESUMO

Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs.


Assuntos
Biomassa , Florestas , Modelos Teóricos , Árvores/crescimento & desenvolvimento , Clima Tropical , América do Sul
13.
Ecol Lett ; 17(5): 527-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24589190

RESUMO

The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits--short turnover times--are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests.


Assuntos
Biodiversidade , Modelos Biológicos , Árvores/fisiologia , América do Sul , Clima Tropical
14.
Glob Ecol Biogeogr ; 23(8): 935-946, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26430387

RESUMO

AIM: The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. LOCATION: Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1. METHODS: Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. RESULTS: The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. MAIN CONCLUSIONS: Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.

15.
New Phytol ; 187(3): 631-46, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20659252

RESUMO

*The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. *We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. *In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. *These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.


Assuntos
Secas , Árvores/crescimento & desenvolvimento , Clima Tropical , Adaptação Fisiológica , Biomassa , Brasil , Ecossistema , Modelos Biológicos , Caules de Planta/crescimento & desenvolvimento , Chuva , Estresse Fisiológico , Fatores de Tempo , Água , Madeira/crescimento & desenvolvimento
16.
Science ; 323(5919): 1344-7, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19265020

RESUMO

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.


Assuntos
Biomassa , Secas , Ecossistema , Árvores , Atmosfera , Brasil , Carbono , Dióxido de Carbono , Clima , América do Sul , Árvores/crescimento & desenvolvimento , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...